Tau-method approximations for the Bessel function Y0(z)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Computing Bessel Function Integrals

Infinite integrals involving Bessel functions are recast, by means of an Abel transform, in terms of Fourier integrals. As there are many efficient numerical methods for computing Fourier integrals, this leads to a convenient way of approximating Bessel function integrals.

متن کامل

Polynomial Approximations to Bessel Functions

A polynomial approximation to Bessel functions that arises from an electromagnetic scattering problem is examined. The approximation is extended to Bessel functions of any integer order, and the relationship to the Taylor series is derived. Numerical calculations show that the polynomial approximation and the Taylor series truncated to the same order have similar accuracies.

متن کامل

Bessel Function Zeroes

0  1  2  3   as does its derivative  0 (): 0  0 1   0 2   0 3     0 0 = 0 01   0 02   0 03   0 04    = 0 See Tables 1 & 2 for the cases  = 0 1 2 and Tables 3 & 4 for the cases  = 12 32 52. These appear in many physical applications that we cannot hope to survey in entirety. We will state only a few properties and several importan...

متن کامل

A Bessel Function Multiplier

We obtain nearly sharp estimates for the L p (R 2) norms of certain convolution operators. For n 1 let n be the measure on R 2 obtained by multiplying normalized arclength measure on fjxj = 1g by the oscillating factor e inarg(x). For 1 p 1, let C(p; n) denoted the norm of the operator T n f : = n f on L p (R 2). The purpose of this note is to estimate the rate of decay of C(p; n) as n ! 1. By ...

متن کامل

The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model

This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1995

ISSN: 0898-1221

DOI: 10.1016/0898-1221(95)00120-n